We describe the natural framework in which the relative spectral theory is developed. We give some results and indicate how they relate to two open problems in ergodic theory. We also compute the relative entropy of gaussian extensions of ergodic transformations.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm206-0-17, author = {J.-P. Thouvenot}, title = {Relative spectral theory and measure-theoretic entropy of gaussian extensions}, journal = {Fundamenta Mathematicae}, volume = {205}, year = {2009}, pages = {287-298}, zbl = {1187.37006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm206-0-17} }
J.-P. Thouvenot. Relative spectral theory and measure-theoretic entropy of gaussian extensions. Fundamenta Mathematicae, Tome 205 (2009) pp. 287-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm206-0-17/