On the rate of convergence to the neutral attractor of a family of one-dimensional maps
T. Nowicki ; M. Sviridenko ; G. Świrszcz ; S. Winograd
Fundamenta Mathematicae, Tome 205 (2009), p. 253-269 / Harvested from The Polish Digital Mathematics Library

For a family of maps fd(p)=1-(1-p/d)d, d ∈ [2,∞], p ∈ [0,1]. we analyze the speed of convergence (including constants) to the globally attracting neutral fixed point p = 0. The study is motivated by a problem in the optimization of routing. The aim of this paper is twofold: (1) to extend the usage of dynamical systems to unexplored areas of algorithms and (2) to provide a toolbox for a precise analysis of the iterates near a non-degenerate neutral fixed point.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:282715
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm206-0-14,
     author = {T. Nowicki and M. Sviridenko and G. \'Swirszcz and S. Winograd},
     title = {On the rate of convergence to the neutral attractor of a family of one-dimensional maps},
     journal = {Fundamenta Mathematicae},
     volume = {205},
     year = {2009},
     pages = {253-269},
     zbl = {1187.37056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm206-0-14}
}
T. Nowicki; M. Sviridenko; G. Świrszcz; S. Winograd. On the rate of convergence to the neutral attractor of a family of one-dimensional maps. Fundamenta Mathematicae, Tome 205 (2009) pp. 253-269. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm206-0-14/