We show that all periods of periodic points forced by a pattern for interval maps are preserved for high-dimensional maps if the multidimensional perturbation is small. We also show that if an interval map has a fixed point associated with a homoclinic-like orbit then any small multidimensional perturbation has periodic points of all periods.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm206-0-13, author = {Ming-Chia Li and Piotr Zgliczy\'nski}, title = {On stability of forcing relations for multidimensional perturbations of interval maps}, journal = {Fundamenta Mathematicae}, volume = {205}, year = {2009}, pages = {241-251}, zbl = {1187.37059}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm206-0-13} }
Ming-Chia Li; Piotr Zgliczyński. On stability of forcing relations for multidimensional perturbations of interval maps. Fundamenta Mathematicae, Tome 205 (2009) pp. 241-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm206-0-13/