A homeomorphism h:X → X of a compactum X is expansive provided that for some fixed c > 0 and any distinct x, y ∈ X there exists an integer n, dependent only on x and y, such that d(hⁿ(x),hⁿ(y)) > c. It is shown that if X is a circle-like continuum that admits an expansive homeomorphism, then X is homeomorphic to a solenoid.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm205-3-3, author = {Christopher Mouron}, title = {The solenoids are the only circle-like continua that admit expansive homeomorphisms}, journal = {Fundamenta Mathematicae}, volume = {205}, year = {2009}, pages = {237-264}, zbl = {1182.54046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm205-3-3} }
Christopher Mouron. The solenoids are the only circle-like continua that admit expansive homeomorphisms. Fundamenta Mathematicae, Tome 205 (2009) pp. 237-264. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm205-3-3/