Let and be compact symplectic manifolds (resp. symplectic manifolds) of dimension 2n > 2. Fix 0 < s < n (resp. 0 < k ≤ n) and assume that a diffeomorphism Φ : X → Y maps all 2s-dimensional symplectic submanifolds of X to symplectic submanifolds of Y (resp. all isotropic k-dimensional tori of X to isotropic tori of Y). We prove that in both cases Φ is a conformal symplectomorphism, i.e., there is a constant c ≠0 such that .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm205-2-4, author = {Stanis\l aw Janeczko and Zbigniew Jelonek}, title = {Characterization of diffeomorphisms that are symplectomorphisms}, journal = {Fundamenta Mathematicae}, volume = {205}, year = {2009}, pages = {147-160}, zbl = {1182.53074}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm205-2-4} }
Stanisław Janeczko; Zbigniew Jelonek. Characterization of diffeomorphisms that are symplectomorphisms. Fundamenta Mathematicae, Tome 205 (2009) pp. 147-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm205-2-4/