If φ is a Pisot substitution of degree d, then the inflation and substitution homeomorphism Φ on the tiling space factors via geometric realization onto a d-dimensional solenoid. Under this realization, the collection of Φ-periodic asymptotic tilings corresponds to a finite set that projects onto the branch locus in a d-torus. We prove that if two such tiling spaces are homeomorphic, then the resulting branch loci are the same up to the action of certain affine maps on the torus.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm204-3-2, author = {Marcy Barge and Beverly Diamond and Richard Swanson}, title = {The branch locus for one-dimensional Pisot tiling spaces}, journal = {Fundamenta Mathematicae}, volume = {205}, year = {2009}, pages = {215-240}, zbl = {1185.37013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm204-3-2} }
Marcy Barge; Beverly Diamond; Richard Swanson. The branch locus for one-dimensional Pisot tiling spaces. Fundamenta Mathematicae, Tome 205 (2009) pp. 215-240. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm204-3-2/