Minimal number of periodic points for smooth self-maps of S³
Grzegorz Graff ; Jerzy Jezierski
Fundamenta Mathematicae, Tome 205 (2009), p. 127-144 / Harvested from The Polish Digital Mathematics Library

Let f be a continuous self-map of a smooth compact connected and simply-connected manifold of dimension m ≥ 3 and r a fixed natural number. A topological invariant Drm[f], introduced by the authors [Forum Math. 21 (2009)], is equal to the minimal number of r-periodic points for all smooth maps homotopic to f. In this paper we calculate D³r[f] for all self-maps of S³.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:282767
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm204-2-3,
     author = {Grzegorz Graff and Jerzy Jezierski},
     title = {Minimal number of periodic points for smooth self-maps of S$^3$},
     journal = {Fundamenta Mathematicae},
     volume = {205},
     year = {2009},
     pages = {127-144},
     zbl = {1184.37017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm204-2-3}
}
Grzegorz Graff; Jerzy Jezierski. Minimal number of periodic points for smooth self-maps of S³. Fundamenta Mathematicae, Tome 205 (2009) pp. 127-144. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm204-2-3/