Local symplectic algebra of quasi-homogeneous curves
Wojciech Domitrz
Fundamenta Mathematicae, Tome 205 (2009), p. 57-86 / Harvested from The Polish Digital Mathematics Library

We study the local symplectic algebra of parameterized curves introduced by V. I. Arnold. We use the method of algebraic restrictions to classify symplectic singularities of quasi-homogeneous curves. We prove that the space of algebraic restrictions of closed 2-forms to the germ of a 𝕂-analytic curve is a finite-dimensional vector space. We also show that the action of local diffeomorphisms preserving the quasi-homogeneous curve on this vector space is determined by the infinitesimal action of liftable vector fields. We apply these results to obtain a complete symplectic classification of curves with semigroups (3,4,5), (3,5,7), (3,7,8).

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:282841
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm204-1-4,
     author = {Wojciech Domitrz},
     title = {Local symplectic algebra of quasi-homogeneous curves},
     journal = {Fundamenta Mathematicae},
     volume = {205},
     year = {2009},
     pages = {57-86},
     zbl = {1173.53038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm204-1-4}
}
Wojciech Domitrz. Local symplectic algebra of quasi-homogeneous curves. Fundamenta Mathematicae, Tome 205 (2009) pp. 57-86. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm204-1-4/