Isometries of systolic spaces
Tomasz Elsner
Fundamenta Mathematicae, Tome 205 (2009), p. 39-55 / Harvested from The Polish Digital Mathematics Library

We provide a classification of isometries of systolic complexes corresponding to the classification of isometries of CAT(0)-spaces. We prove that any isometry of a systolic complex either fixes the barycentre of some simplex (elliptic case) or stabilizes a thick geodesic (hyperbolic case). This leads to an alternative proof of the fact that finitely generated abelian subgroups of systolic groups are undistorted.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:282729
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm204-1-3,
     author = {Tomasz Elsner},
     title = {Isometries of systolic spaces},
     journal = {Fundamenta Mathematicae},
     volume = {205},
     year = {2009},
     pages = {39-55},
     zbl = {1231.20037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm204-1-3}
}
Tomasz Elsner. Isometries of systolic spaces. Fundamenta Mathematicae, Tome 205 (2009) pp. 39-55. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm204-1-3/