Embeddings of totally ordered MV-algebras of bounded cardinality
Piotr J. Wojciechowski
Fundamenta Mathematicae, Tome 205 (2009), p. 57-63 / Harvested from The Polish Digital Mathematics Library

For a given cardinal number 𝔞, we construct a totally ordered MV-algebra M(𝔞) having the property that every totally ordered MV-algebra of cardinality at most 𝔞 embeds into M(𝔞). In case 𝔞 = ℵ₀, the algebra M(𝔞) is the first known MV-algebra with respect to which the deductive system for the infinitely-valued Łukasiewicz's propositional logic is strongly complete.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:282629
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm203-1-5,
     author = {Piotr J. Wojciechowski},
     title = {Embeddings of totally ordered MV-algebras of bounded cardinality},
     journal = {Fundamenta Mathematicae},
     volume = {205},
     year = {2009},
     pages = {57-63},
     zbl = {1174.06016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm203-1-5}
}
Piotr J. Wojciechowski. Embeddings of totally ordered MV-algebras of bounded cardinality. Fundamenta Mathematicae, Tome 205 (2009) pp. 57-63. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm203-1-5/