We describe totally dissipative parabolic extensions of the one-sided Bernoulli shift. For the fractional linear case we obtain conservative and totally dissipative families of extensions. Here, the property of conservativity seems to be extremely unstable.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm202-3-3, author = {Zbigniew S. Kowalski}, title = {Iterations of the Frobenius-Perron operator for parabolic random maps}, journal = {Fundamenta Mathematicae}, volume = {205}, year = {2009}, pages = {241-250}, zbl = {1160.37310}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm202-3-3} }
Zbigniew S. Kowalski. Iterations of the Frobenius-Perron operator for parabolic random maps. Fundamenta Mathematicae, Tome 205 (2009) pp. 241-250. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm202-3-3/