We describe totally dissipative parabolic extensions of the one-sided Bernoulli shift. For the fractional linear case we obtain conservative and totally dissipative families of extensions. Here, the property of conservativity seems to be extremely unstable.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm202-3-3,
author = {Zbigniew S. Kowalski},
title = {Iterations of the Frobenius-Perron operator for parabolic random maps},
journal = {Fundamenta Mathematicae},
volume = {205},
year = {2009},
pages = {241-250},
zbl = {1160.37310},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm202-3-3}
}
Zbigniew S. Kowalski. Iterations of the Frobenius-Perron operator for parabolic random maps. Fundamenta Mathematicae, Tome 205 (2009) pp. 241-250. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm202-3-3/