Dynamic classification of escape time Sierpiński curve Julia sets
Robert L. Devaney ; Kevin M. Pilgrim
Fundamenta Mathematicae, Tome 205 (2009), p. 181-198 / Harvested from The Polish Digital Mathematics Library

For n ≥ 2, the family of rational maps Fλ(z)=z+λ/z contains a countably infinite set of parameter values for which all critical orbits eventually land after some number κ of iterations on the point at infinity. The Julia sets of such maps are Sierpiński curves if κ ≥ 3. We show that two such maps are topologically conjugate on their Julia sets if and only if they are Möbius or anti-Möbius conjugate, and we give a precise count of the number of topological conjugacy classes as a function of n and κ.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:283288
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm202-2-5,
     author = {Robert L. Devaney and Kevin M. Pilgrim},
     title = {Dynamic classification of escape time Sierpi\'nski curve Julia sets},
     journal = {Fundamenta Mathematicae},
     volume = {205},
     year = {2009},
     pages = {181-198},
     zbl = {1160.37362},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm202-2-5}
}
Robert L. Devaney; Kevin M. Pilgrim. Dynamic classification of escape time Sierpiński curve Julia sets. Fundamenta Mathematicae, Tome 205 (2009) pp. 181-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm202-2-5/