For n ≥ 2, the family of rational maps contains a countably infinite set of parameter values for which all critical orbits eventually land after some number κ of iterations on the point at infinity. The Julia sets of such maps are Sierpiński curves if κ ≥ 3. We show that two such maps are topologically conjugate on their Julia sets if and only if they are Möbius or anti-Möbius conjugate, and we give a precise count of the number of topological conjugacy classes as a function of n and κ.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm202-2-5, author = {Robert L. Devaney and Kevin M. Pilgrim}, title = {Dynamic classification of escape time Sierpi\'nski curve Julia sets}, journal = {Fundamenta Mathematicae}, volume = {205}, year = {2009}, pages = {181-198}, zbl = {1160.37362}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm202-2-5} }
Robert L. Devaney; Kevin M. Pilgrim. Dynamic classification of escape time Sierpiński curve Julia sets. Fundamenta Mathematicae, Tome 205 (2009) pp. 181-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm202-2-5/