We study Thom polynomials associated with Lagrange singularities. We expand them in the basis of Q̃-functions. This basis plays a key role in the Schubert calculus of isotropic Grassmannians. We prove that the Q̃-function expansions of the Thom polynomials of Lagrange singularities always have nonnegative coefficients. This is an analog of a result on the Thom polynomials of mapping singularities and Schur S-functions, established formerly by the last two authors.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm202-1-3, author = {Ma\l gorzata Mikosz and Piotr Pragacz and Andrzej Weber}, title = {Positivity of Thom polynomials II: the Lagrange singularities}, journal = {Fundamenta Mathematicae}, volume = {205}, year = {2009}, pages = {65-79}, zbl = {1160.05058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm202-1-3} }
Małgorzata Mikosz; Piotr Pragacz; Andrzej Weber. Positivity of Thom polynomials II: the Lagrange singularities. Fundamenta Mathematicae, Tome 205 (2009) pp. 65-79. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm202-1-3/