Unified quantum invariants and their refinements for homology 3-spheres with 2-torsion
Anna Beliakova ; Christian Blanchet ; Thang T. Q. Lê
Fundamenta Mathematicae, Tome 201 (2008), p. 217-239 / Harvested from The Polish Digital Mathematics Library

For every rational homology 3-sphere with H₁(M,ℤ) = (ℤ/2ℤ)ⁿ we construct a unified invariant (which takes values in a certain cyclotomic completion of a polynomial ring) such that the evaluation of this invariant at any odd root of unity provides the SO(3) Witten-Reshetikhin-Turaev invariant at this root, and at any even root of unity the SU(2) quantum invariant. Moreover, this unified invariant splits into a sum of the refined unified invariants dominating spin and cohomological refinements of quantum SU(2) invariants. New results on the Ohtsuki series and the integrality of quantum invariants are the main applications of our construction.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:282946
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-3-2,
     author = {Anna Beliakova and Christian Blanchet and Thang T. Q. L\^e},
     title = {Unified quantum invariants and their refinements for homology 3-spheres with 2-torsion},
     journal = {Fundamenta Mathematicae},
     volume = {201},
     year = {2008},
     pages = {217-239},
     zbl = {1210.57012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-3-2}
}
Anna Beliakova; Christian Blanchet; Thang T. Q. Lê. Unified quantum invariants and their refinements for homology 3-spheres with 2-torsion. Fundamenta Mathematicae, Tome 201 (2008) pp. 217-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-3-2/