We show that, given any n and α, any embedding of any sufficiently large complete graph in ℝ³ contains an oriented link with components Q₁, ..., Qₙ such that for every i ≠ j, and , where denotes the second coefficient of the Conway polynomial of .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-2-3,
author = {Erica Flapan and Blake Mellor and Ramin Naimi},
title = {Intrinsic linking and knotting are arbitrarily complex},
journal = {Fundamenta Mathematicae},
volume = {201},
year = {2008},
pages = {131-148},
zbl = {1170.57001},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-2-3}
}
Erica Flapan; Blake Mellor; Ramin Naimi. Intrinsic linking and knotting are arbitrarily complex. Fundamenta Mathematicae, Tome 201 (2008) pp. 131-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-2-3/