Intrinsic linking and knotting are arbitrarily complex
Erica Flapan ; Blake Mellor ; Ramin Naimi
Fundamenta Mathematicae, Tome 201 (2008), p. 131-148 / Harvested from The Polish Digital Mathematics Library

We show that, given any n and α, any embedding of any sufficiently large complete graph in ℝ³ contains an oriented link with components Q₁, ..., Qₙ such that for every i ≠ j, |lk(Qi,Qj)|α and |a(Qi)|α, where a(Qi) denotes the second coefficient of the Conway polynomial of Qi.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:283302
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-2-3,
     author = {Erica Flapan and Blake Mellor and Ramin Naimi},
     title = {Intrinsic linking and knotting are arbitrarily complex},
     journal = {Fundamenta Mathematicae},
     volume = {201},
     year = {2008},
     pages = {131-148},
     zbl = {1170.57001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-2-3}
}
Erica Flapan; Blake Mellor; Ramin Naimi. Intrinsic linking and knotting are arbitrarily complex. Fundamenta Mathematicae, Tome 201 (2008) pp. 131-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-2-3/