We show that, given any n and α, any embedding of any sufficiently large complete graph in ℝ³ contains an oriented link with components Q₁, ..., Qₙ such that for every i ≠ j, and , where denotes the second coefficient of the Conway polynomial of .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-2-3, author = {Erica Flapan and Blake Mellor and Ramin Naimi}, title = {Intrinsic linking and knotting are arbitrarily complex}, journal = {Fundamenta Mathematicae}, volume = {201}, year = {2008}, pages = {131-148}, zbl = {1170.57001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-2-3} }
Erica Flapan; Blake Mellor; Ramin Naimi. Intrinsic linking and knotting are arbitrarily complex. Fundamenta Mathematicae, Tome 201 (2008) pp. 131-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-2-3/