We show that an aperiodic minimal tiling space with only finitely many asymptotic composants embeds in a surface if and only if it is the suspension of a symbolic interval exchange transformation (possibly with reversals). We give two necessary conditions for an aperiodic primitive substitution tiling space to embed in a surface. In the case of substitutions on two symbols our classification is nearly complete. The results characterize the codimension one hyperbolic attractors of surface diffeomorphisms in terms of asymptotic composants of substitutions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-2-1, author = {Charles Holton and Brian F. Martensen}, title = {Embedding tiling spaces in surfaces}, journal = {Fundamenta Mathematicae}, volume = {201}, year = {2008}, pages = {99-113}, zbl = {1155.37016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-2-1} }
Charles Holton; Brian F. Martensen. Embedding tiling spaces in surfaces. Fundamenta Mathematicae, Tome 201 (2008) pp. 99-113. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-2-1/