Embedding tiling spaces in surfaces
Charles Holton ; Brian F. Martensen
Fundamenta Mathematicae, Tome 201 (2008), p. 99-113 / Harvested from The Polish Digital Mathematics Library

We show that an aperiodic minimal tiling space with only finitely many asymptotic composants embeds in a surface if and only if it is the suspension of a symbolic interval exchange transformation (possibly with reversals). We give two necessary conditions for an aperiodic primitive substitution tiling space to embed in a surface. In the case of substitutions on two symbols our classification is nearly complete. The results characterize the codimension one hyperbolic attractors of surface diffeomorphisms in terms of asymptotic composants of substitutions.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:283385
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-2-1,
     author = {Charles Holton and Brian F. Martensen},
     title = {Embedding tiling spaces in surfaces},
     journal = {Fundamenta Mathematicae},
     volume = {201},
     year = {2008},
     pages = {99-113},
     zbl = {1155.37016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-2-1}
}
Charles Holton; Brian F. Martensen. Embedding tiling spaces in surfaces. Fundamenta Mathematicae, Tome 201 (2008) pp. 99-113. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-2-1/