A countable dense homogeneous space with a dense rigid open subspace
Jan van Mill
Fundamenta Mathematicae, Tome 201 (2008), p. 91-98 / Harvested from The Polish Digital Mathematics Library

We show that there is a Polish space which is countable dense homogeneous but contains a dense open rigid connected subset. This answers several questions of Fitzpatrick and Zhou.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:282645
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-1-3,
     author = {Jan van Mill},
     title = {A countable dense homogeneous space with a dense rigid open subspace},
     journal = {Fundamenta Mathematicae},
     volume = {201},
     year = {2008},
     pages = {91-98},
     zbl = {1167.57301},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-1-3}
}
Jan van Mill. A countable dense homogeneous space with a dense rigid open subspace. Fundamenta Mathematicae, Tome 201 (2008) pp. 91-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-1-3/