We prove that given a compact n-dimensional connected Riemannian manifold X and a continuous function g: X → ℝ, there exists a dense subset of the space of homeomorphisms of X such that for all T in this subset, the integral , considered as a function on the space of all T-invariant Borel probability measures μ, attains its maximum on a measure supported on a periodic orbit.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm200-2-3, author = {F\'abio Armando Tal and Salvador Addas-Zanata}, title = {On maximizing measures of homeomorphisms on compact manifolds}, journal = {Fundamenta Mathematicae}, volume = {201}, year = {2008}, pages = {145-159}, zbl = {1153.37305}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm200-2-3} }
Fábio Armando Tal; Salvador Addas-Zanata. On maximizing measures of homeomorphisms on compact manifolds. Fundamenta Mathematicae, Tome 201 (2008) pp. 145-159. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm200-2-3/