We describe the integral cohomology rings of the flag manifolds of types Bₙ, Dₙ, G₂ and F₄ in terms of their Schubert classes. The main tool is the divided difference operators of Bernstein-Gelfand-Gelfand and Demazure. As an application, we compute the Chow rings of the corresponding complex algebraic groups, recovering thereby the results of R. Marlin.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm199-3-5, author = {Masaki Nakagawa}, title = {A description based on Schubert classes of cohomology of flag manifolds}, journal = {Fundamenta Mathematicae}, volume = {201}, year = {2008}, pages = {273-293}, zbl = {1161.57022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm199-3-5} }
Masaki Nakagawa. A description based on Schubert classes of cohomology of flag manifolds. Fundamenta Mathematicae, Tome 201 (2008) pp. 273-293. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm199-3-5/