Best constants for Lipschitz embeddings of metric spaces into c₀
N. J. Kalton ; G. Lancien
Fundamenta Mathematicae, Tome 201 (2008), p. 249-272 / Harvested from The Polish Digital Mathematics Library

We answer a question of Aharoni by showing that every separable metric space can be Lipschitz 2-embedded into c₀ and this result is sharp; this improves earlier estimates of Aharoni, Assouad and Pelant. We use our methods to examine the best constant for Lipschitz embeddings of the classical p-spaces into c₀ and give other applications. We prove that if a Banach space embeds almost isometrically into c₀, then it embeds linearly almost isometrically into c₀. We also study Lipschitz embeddings into c₀⁺.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:283239
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm199-3-4,
     author = {N. J. Kalton and G. Lancien},
     title = {Best constants for Lipschitz embeddings of metric spaces into c0},
     journal = {Fundamenta Mathematicae},
     volume = {201},
     year = {2008},
     pages = {249-272},
     zbl = {1153.46047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm199-3-4}
}
N. J. Kalton; G. Lancien. Best constants for Lipschitz embeddings of metric spaces into c₀. Fundamenta Mathematicae, Tome 201 (2008) pp. 249-272. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm199-3-4/