We prove that every (extended) Borel subset E of X × Y, where X is complete metric and Y is Polish, can be covered by countably many extended Borel sets with compact sections if the sections , x ∈ X, are σ-compact. This is a nonseparable version of a theorem of Saint Raymond. As a by-product, we get a proof of Saint Raymond’s result which does not use transfinite induction.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm199-2-4, author = {Petr Holick\'y}, title = {Borel sets with $\sigma$-compact sections for nonseparable spaces}, journal = {Fundamenta Mathematicae}, volume = {201}, year = {2008}, pages = {139-154}, zbl = {1202.54027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm199-2-4} }
Petr Holický. Borel sets with σ-compact sections for nonseparable spaces. Fundamenta Mathematicae, Tome 201 (2008) pp. 139-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm199-2-4/