Borel sets with σ-compact sections for nonseparable spaces
Petr Holický
Fundamenta Mathematicae, Tome 201 (2008), p. 139-154 / Harvested from The Polish Digital Mathematics Library

We prove that every (extended) Borel subset E of X × Y, where X is complete metric and Y is Polish, can be covered by countably many extended Borel sets with compact sections if the sections Ex=yY:(x,y)E, x ∈ X, are σ-compact. This is a nonseparable version of a theorem of Saint Raymond. As a by-product, we get a proof of Saint Raymond’s result which does not use transfinite induction.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:283199
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm199-2-4,
     author = {Petr Holick\'y},
     title = {Borel sets with $\sigma$-compact sections for nonseparable spaces},
     journal = {Fundamenta Mathematicae},
     volume = {201},
     year = {2008},
     pages = {139-154},
     zbl = {1202.54027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm199-2-4}
}
Petr Holický. Borel sets with σ-compact sections for nonseparable spaces. Fundamenta Mathematicae, Tome 201 (2008) pp. 139-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm199-2-4/