We prove that an -additive cover of a Čech complete, or more generally scattered-K-analytic space, has a σ-scattered refinement. This generalizes results of G. Koumoullis and R. W. Hansell.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm199-2-3, author = {Ji\v r\'\i\ Spurn\'y}, title = {$F\_{$\sigma$}$-additive covers of \v Cech complete and scattered-K-analytic spaces}, journal = {Fundamenta Mathematicae}, volume = {201}, year = {2008}, pages = {131-138}, zbl = {1143.54016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm199-2-3} }
Jiří Spurný. $F_{σ}$-additive covers of Čech complete and scattered-K-analytic spaces. Fundamenta Mathematicae, Tome 201 (2008) pp. 131-138. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm199-2-3/