Non-existence of absolutely continuous invariant probabilities for exponential maps
Neil Dobbs ; Bartłomiej Skorulski
Fundamenta Mathematicae, Tome 201 (2008), p. 283-287 / Harvested from The Polish Digital Mathematics Library

We show that for entire maps of the form z ↦ λexp(z) such that the orbit of zero is bounded and Lebesgue almost every point is transitive, no absolutely continuous invariant probability measure can exist. This answers a long-standing open problem.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:282613
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm198-3-6,
     author = {Neil Dobbs and Bart\l omiej Skorulski},
     title = {Non-existence of absolutely continuous invariant probabilities for exponential maps},
     journal = {Fundamenta Mathematicae},
     volume = {201},
     year = {2008},
     pages = {283-287},
     zbl = {1167.37024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm198-3-6}
}
Neil Dobbs; Bartłomiej Skorulski. Non-existence of absolutely continuous invariant probabilities for exponential maps. Fundamenta Mathematicae, Tome 201 (2008) pp. 283-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm198-3-6/