Hurewicz-Serre theorem in extension theory
M. Cencelj ; J. Dydak ; A. Mitra ; A. Vavpetič
Fundamenta Mathematicae, Tome 201 (2008), p. 113-123 / Harvested from The Polish Digital Mathematics Library

The paper is devoted to generalizations of the Cencelj-Dranishnikov theorems relating extension properties of nilpotent CW complexes to their homology groups. Here are the main results of the paper: Theorem 0.1. Let L be a nilpotent CW complex and F the homotopy fiber of the inclusion i of L into its infinite symmetric product SP(L). If X is a metrizable space such that XτK(Hk(L),k) for all k ≥ 1, then XτK(πk(F),k) and XτK(πk(L),k) for all k ≥ .Theorem 0.2. Let X be a metrizable space such that dim(X) < ∞ or X ∈ ANR. Suppose L is a nilpotent CW complex. If XτSP(L), then XτL in the following cases: (a) H₁(L) is finitely generated. (b) H₁(L) is a torsion group.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:282814
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm198-2-2,
     author = {M. Cencelj and J. Dydak and A. Mitra and A. Vavpeti\v c},
     title = {Hurewicz-Serre theorem in extension theory},
     journal = {Fundamenta Mathematicae},
     volume = {201},
     year = {2008},
     pages = {113-123},
     zbl = {1151.54027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm198-2-2}
}
M. Cencelj; J. Dydak; A. Mitra; A. Vavpetič. Hurewicz-Serre theorem in extension theory. Fundamenta Mathematicae, Tome 201 (2008) pp. 113-123. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm198-2-2/