We demonstrate that a second countable space is weakly orderable if and only if it has a continuous weak selection. This provides a partial positive answer to a question of van Mill and Wattel.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm196-3-4, author = {Valentin Gutev}, title = {Weak orderability of second countable spaces}, journal = {Fundamenta Mathematicae}, volume = {193}, year = {2007}, pages = {275-287}, zbl = {1129.54016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm196-3-4} }
Valentin Gutev. Weak orderability of second countable spaces. Fundamenta Mathematicae, Tome 193 (2007) pp. 275-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm196-3-4/