Answering a question of Kłopotowski, Nadkarni, Sarbadhikari, and Srivastava, we characterize the Borel sets S ⊆ X × Y with the property that every Borel function f: S → ℂ is of the form f(x,y) = u(x) + v(y), where u: X → ℂ and v: Y → ℂ are Borel.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm196-2-2, author = {Benjamin D. Miller}, title = {Coordinatewise decomposition of group-valued Borel functions}, journal = {Fundamenta Mathematicae}, volume = {193}, year = {2007}, pages = {119-126}, zbl = {1127.03039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm196-2-2} }
Benjamin D. Miller. Coordinatewise decomposition of group-valued Borel functions. Fundamenta Mathematicae, Tome 193 (2007) pp. 119-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm196-2-2/