Let X be a Polish space, and let C₀ and C₁ be disjoint coanalytic subsets of X. The pair (C₀,C₁) is said to be complete if for every pair (D₀,D₁) of disjoint coanalytic subsets of there exists a continuous function such that and . We give several explicit examples of complete pairs of coanalytic sets.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm194-3-4, author = {Jean Saint Raymond}, title = {Complete pairs of coanalytic sets}, journal = {Fundamenta Mathematicae}, volume = {193}, year = {2007}, pages = {267-281}, zbl = {1118.03044}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm194-3-4} }
Jean Saint Raymond. Complete pairs of coanalytic sets. Fundamenta Mathematicae, Tome 193 (2007) pp. 267-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm194-3-4/