Let X be a Polish space, and let C₀ and C₁ be disjoint coanalytic subsets of X. The pair (C₀,C₁) is said to be complete if for every pair (D₀,D₁) of disjoint coanalytic subsets of there exists a continuous function such that and . We give several explicit examples of complete pairs of coanalytic sets.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm194-3-4,
author = {Jean Saint Raymond},
title = {Complete pairs of coanalytic sets},
journal = {Fundamenta Mathematicae},
volume = {193},
year = {2007},
pages = {267-281},
zbl = {1118.03044},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm194-3-4}
}
Jean Saint Raymond. Complete pairs of coanalytic sets. Fundamenta Mathematicae, Tome 193 (2007) pp. 267-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm194-3-4/