Complete pairs of coanalytic sets
Jean Saint Raymond
Fundamenta Mathematicae, Tome 193 (2007), p. 267-281 / Harvested from The Polish Digital Mathematics Library

Let X be a Polish space, and let C₀ and C₁ be disjoint coanalytic subsets of X. The pair (C₀,C₁) is said to be complete if for every pair (D₀,D₁) of disjoint coanalytic subsets of ωω there exists a continuous function f:ωωX such that f-1(C)=D and f-1(C)=D. We give several explicit examples of complete pairs of coanalytic sets.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:286069
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm194-3-4,
     author = {Jean Saint Raymond},
     title = {Complete pairs of coanalytic sets},
     journal = {Fundamenta Mathematicae},
     volume = {193},
     year = {2007},
     pages = {267-281},
     zbl = {1118.03044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm194-3-4}
}
Jean Saint Raymond. Complete pairs of coanalytic sets. Fundamenta Mathematicae, Tome 193 (2007) pp. 267-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm194-3-4/