We prove that if a group acts properly and cocompactly on a systolic complex, in whose 1-skeleton there is no isometrically embedded copy of the 1-skeleton of an equilaterally triangulated Euclidean plane, then the group is word-hyperbolic. This was conjectured by D. T. Wise.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-3-4,
author = {Piotr Przytycki},
title = {Systolic groups acting on complexes with no flats are word-hyperbolic},
journal = {Fundamenta Mathematicae},
volume = {193},
year = {2007},
pages = {277-283},
zbl = {1117.20031},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-3-4}
}
Piotr Przytycki. Systolic groups acting on complexes with no flats are word-hyperbolic. Fundamenta Mathematicae, Tome 193 (2007) pp. 277-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-3-4/