Systolic groups acting on complexes with no flats are word-hyperbolic
Piotr Przytycki
Fundamenta Mathematicae, Tome 193 (2007), p. 277-283 / Harvested from The Polish Digital Mathematics Library

We prove that if a group acts properly and cocompactly on a systolic complex, in whose 1-skeleton there is no isometrically embedded copy of the 1-skeleton of an equilaterally triangulated Euclidean plane, then the group is word-hyperbolic. This was conjectured by D. T. Wise.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:282768
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-3-4,
     author = {Piotr Przytycki},
     title = {Systolic groups acting on complexes with no flats are word-hyperbolic},
     journal = {Fundamenta Mathematicae},
     volume = {193},
     year = {2007},
     pages = {277-283},
     zbl = {1117.20031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-3-4}
}
Piotr Przytycki. Systolic groups acting on complexes with no flats are word-hyperbolic. Fundamenta Mathematicae, Tome 193 (2007) pp. 277-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-3-4/