We prove that if a group acts properly and cocompactly on a systolic complex, in whose 1-skeleton there is no isometrically embedded copy of the 1-skeleton of an equilaterally triangulated Euclidean plane, then the group is word-hyperbolic. This was conjectured by D. T. Wise.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-3-4, author = {Piotr Przytycki}, title = {Systolic groups acting on complexes with no flats are word-hyperbolic}, journal = {Fundamenta Mathematicae}, volume = {193}, year = {2007}, pages = {277-283}, zbl = {1117.20031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-3-4} }
Piotr Przytycki. Systolic groups acting on complexes with no flats are word-hyperbolic. Fundamenta Mathematicae, Tome 193 (2007) pp. 277-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-3-4/