We show that the classes of separable reflexive Banach spaces and of spaces with separable dual are strongly bounded. This gives a new proof of a recent result of E. Odell and Th. Schlumprecht, asserting that there exists a separable reflexive Banach space containing isomorphic copies of every separable uniformly convex Banach space.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-2-5,
author = {Pandelis Dodos and Valentin Ferenczi},
title = {Some strongly bounded classes of Banach spaces},
journal = {Fundamenta Mathematicae},
volume = {193},
year = {2007},
pages = {171-179},
zbl = {1115.03061},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-2-5}
}
Pandelis Dodos; Valentin Ferenczi. Some strongly bounded classes of Banach spaces. Fundamenta Mathematicae, Tome 193 (2007) pp. 171-179. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-2-5/