We show that the classes of separable reflexive Banach spaces and of spaces with separable dual are strongly bounded. This gives a new proof of a recent result of E. Odell and Th. Schlumprecht, asserting that there exists a separable reflexive Banach space containing isomorphic copies of every separable uniformly convex Banach space.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-2-5, author = {Pandelis Dodos and Valentin Ferenczi}, title = {Some strongly bounded classes of Banach spaces}, journal = {Fundamenta Mathematicae}, volume = {193}, year = {2007}, pages = {171-179}, zbl = {1115.03061}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-2-5} }
Pandelis Dodos; Valentin Ferenczi. Some strongly bounded classes of Banach spaces. Fundamenta Mathematicae, Tome 193 (2007) pp. 171-179. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-2-5/