A characterization of Ext(G,ℤ) assuming (V = L)
Saharon Shelah ; Lutz Strüngmann
Fundamenta Mathematicae, Tome 193 (2007), p. 141-151 / Harvested from The Polish Digital Mathematics Library

We complete the characterization of Ext(G,ℤ) for any torsion-free abelian group G assuming Gödel’s axiom of constructibility plus there is no weakly compact cardinal. In particular, we prove in (V = L) that, for a singular cardinal ν of uncountable cofinality which is less than the first weakly compact cardinal and for every sequence (νp:pΠ) of cardinals satisfying νp2ν (where Π is the set of all primes), there is a torsion-free abelian group G of size ν such that νp equals the p-rank of Ext(G,ℤ) for every prime p and 2ν is the torsion-free rank of Ext(G,ℤ).

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:283260
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-2-3,
     author = {Saharon Shelah and Lutz Str\"ungmann},
     title = {A characterization of Ext(G,$\mathbb{Z}$) assuming (V = L)},
     journal = {Fundamenta Mathematicae},
     volume = {193},
     year = {2007},
     pages = {141-151},
     zbl = {1116.20036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-2-3}
}
Saharon Shelah; Lutz Strüngmann. A characterization of Ext(G,ℤ) assuming (V = L). Fundamenta Mathematicae, Tome 193 (2007) pp. 141-151. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-2-3/