Sufficient conditions for a map having nonwandering critical points to be Ω-stable are introduced. It is not known if these conditions are necessary, but they are easily verified for all known examples of Ω-stable maps. Their necessity is shown in dimension two. Examples are given of Axiom A maps that have no cycles but are not Ω-stable.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-1-3, author = {J. Delgado and N. Romero and A. Rovella and F. Vilamaj\'o}, title = {$\Omega$-stability for maps with nonwandering critical points}, journal = {Fundamenta Mathematicae}, volume = {193}, year = {2007}, pages = {23-35}, zbl = {1114.37017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-1-3} }
J. Delgado; N. Romero; A. Rovella; F. Vilamajó. Ω-stability for maps with nonwandering critical points. Fundamenta Mathematicae, Tome 193 (2007) pp. 23-35. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-1-3/