We prove that the cardinality of power homogeneous Hausdorff spaces X is bounded by . This inequality improves many known results and it also solves a question by J. van Mill. We further introduce Δ-power homogeneity, which leads to a new proof of van Douwen’s theorem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-3-5, author = {G. J. Ridderbos}, title = {On the cardinality of power homogeneous Hausdorff spaces}, journal = {Fundamenta Mathematicae}, volume = {189}, year = {2006}, pages = {255-266}, zbl = {1116.54003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-3-5} }
G. J. Ridderbos. On the cardinality of power homogeneous Hausdorff spaces. Fundamenta Mathematicae, Tome 189 (2006) pp. 255-266. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-3-5/