We prove that the cardinality of power homogeneous Hausdorff spaces X is bounded by . This inequality improves many known results and it also solves a question by J. van Mill. We further introduce Δ-power homogeneity, which leads to a new proof of van Douwen’s theorem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-3-5,
author = {G. J. Ridderbos},
title = {On the cardinality of power homogeneous Hausdorff spaces},
journal = {Fundamenta Mathematicae},
volume = {189},
year = {2006},
pages = {255-266},
zbl = {1116.54003},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-3-5}
}
G. J. Ridderbos. On the cardinality of power homogeneous Hausdorff spaces. Fundamenta Mathematicae, Tome 189 (2006) pp. 255-266. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-3-5/