We give two examples of scattered compact spaces K such that C(K) is not uniformly homeomorphic to any subset of c₀(Γ) for any set Γ. The first one is [0,ω₁] and hence it has the smallest possible cardinality, the other one has the smallest possible height ω₀ + 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-3-4, author = {Jan Pelant and Petr Holick\'y and Ond\v rej F. K. Kalenda}, title = {C(K) spaces which cannot be uniformly embedded into c0(G)}, journal = {Fundamenta Mathematicae}, volume = {189}, year = {2006}, pages = {245-254}, zbl = {1118.46028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-3-4} }
Jan Pelant; Petr Holický; Ondřej F. K. Kalenda. C(K) spaces which cannot be uniformly embedded into c₀(Γ). Fundamenta Mathematicae, Tome 189 (2006) pp. 245-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-3-4/