Symplectic groups are N-determined 2-compact groups
Aleš Vavpetič ; Antonio Viruel
Fundamenta Mathematicae, Tome 189 (2006), p. 121-139 / Harvested from The Polish Digital Mathematics Library

We show that for n ≥ 3 the symplectic group Sp(n) is as a 2-compact group determined up to isomorphism by the isomorphism type of its maximal torus normalizer. This allows us to determine the integral homotopy type of Sp(n) among connected finite loop spaces with maximal torus.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:283116
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-2-3,
     author = {Ale\v s Vavpeti\v c and Antonio Viruel},
     title = {Symplectic groups are N-determined 2-compact groups},
     journal = {Fundamenta Mathematicae},
     volume = {189},
     year = {2006},
     pages = {121-139},
     zbl = {1120.55014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-2-3}
}
Aleš Vavpetič; Antonio Viruel. Symplectic groups are N-determined 2-compact groups. Fundamenta Mathematicae, Tome 189 (2006) pp. 121-139. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-2-3/