Measurable cardinals and fundamental groups of compact spaces
Adam Przeździecki
Fundamenta Mathematicae, Tome 189 (2006), p. 87-92 / Harvested from The Polish Digital Mathematics Library

We prove that all groups can be realized as fundamental groups of compact spaces if and only if no measurable cardinals exist. If the cardinality of a group G is nonmeasurable then the compact space K such that G = π₁K may be chosen so that it is path connected.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:283151
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-1-6,
     author = {Adam Prze\'zdziecki},
     title = {Measurable cardinals and fundamental groups of compact spaces},
     journal = {Fundamenta Mathematicae},
     volume = {189},
     year = {2006},
     pages = {87-92},
     zbl = {1115.03076},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-1-6}
}
Adam Przeździecki. Measurable cardinals and fundamental groups of compact spaces. Fundamenta Mathematicae, Tome 189 (2006) pp. 87-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-1-6/