We prove that all groups can be realized as fundamental groups of compact spaces if and only if no measurable cardinals exist. If the cardinality of a group G is nonmeasurable then the compact space K such that G = π₁K may be chosen so that it is path connected.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-1-6, author = {Adam Prze\'zdziecki}, title = {Measurable cardinals and fundamental groups of compact spaces}, journal = {Fundamenta Mathematicae}, volume = {189}, year = {2006}, pages = {87-92}, zbl = {1115.03076}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-1-6} }
Adam Przeździecki. Measurable cardinals and fundamental groups of compact spaces. Fundamenta Mathematicae, Tome 189 (2006) pp. 87-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm192-1-6/