Quasi-bounded trees and analytic inductions
Jean Saint Raymond
Fundamenta Mathematicae, Tome 189 (2006), p. 175-185 / Harvested from The Polish Digital Mathematics Library

A tree T on ω is said to be cofinal if for every αωω there is some branch β of T such that α ≤ β, and quasi-bounded otherwise. We prove that the set of quasi-bounded trees is a complete Σ¹₁-inductive set. In particular, it is neither analytic nor co-analytic.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:282633
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm191-2-4,
     author = {Jean Saint Raymond},
     title = {Quasi-bounded trees and analytic inductions},
     journal = {Fundamenta Mathematicae},
     volume = {189},
     year = {2006},
     pages = {175-185},
     zbl = {1097.03043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm191-2-4}
}
Jean Saint Raymond. Quasi-bounded trees and analytic inductions. Fundamenta Mathematicae, Tome 189 (2006) pp. 175-185. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm191-2-4/