Multivalued Lyapunov functions for homeomorphisms of the 2-torus
Patrice Le Calvez
Fundamenta Mathematicae, Tome 189 (2006), p. 227-253 / Harvested from The Polish Digital Mathematics Library

Let F be a homeomorphism of 𝕋² = ℝ²/ℤ² isotopic to the identity and f a lift to the universal covering space ℝ². We suppose that κ ∈ H¹(𝕋²,ℝ) is a cohomology class which is positive on the rotation set of f. We prove the existence of a smooth Lyapunov function of f whose derivative lifts a non-vanishing smooth closed form on 𝕋² whose cohomology class is κ.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:283017
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm189-3-2,
     author = {Patrice Le Calvez},
     title = {Multivalued Lyapunov functions for homeomorphisms of the 2-torus},
     journal = {Fundamenta Mathematicae},
     volume = {189},
     year = {2006},
     pages = {227-253},
     zbl = {1134.37340},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm189-3-2}
}
Patrice Le Calvez. Multivalued Lyapunov functions for homeomorphisms of the 2-torus. Fundamenta Mathematicae, Tome 189 (2006) pp. 227-253. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm189-3-2/