We show that the Hilbert space is coarsely embeddable into any for 1 ≤ p ≤ ∞. It follows that coarse embeddability into ℓ₂ and into are equivalent for 1 ≤ p < 2.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm189-2-2, author = {Piotr W. Nowak}, title = {On coarse embeddability into $l\_p$-spaces and a conjecture of Dranishnikov}, journal = {Fundamenta Mathematicae}, volume = {189}, year = {2006}, pages = {111-116}, zbl = {1097.46052}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm189-2-2} }
Piotr W. Nowak. On coarse embeddability into $ℓ_p$-spaces and a conjecture of Dranishnikov. Fundamenta Mathematicae, Tome 189 (2006) pp. 111-116. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm189-2-2/