On coarse embeddability into p-spaces and a conjecture of Dranishnikov
Piotr W. Nowak
Fundamenta Mathematicae, Tome 189 (2006), p. 111-116 / Harvested from The Polish Digital Mathematics Library

We show that the Hilbert space is coarsely embeddable into any p for 1 ≤ p ≤ ∞. It follows that coarse embeddability into ℓ₂ and into p are equivalent for 1 ≤ p < 2.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:282754
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm189-2-2,
     author = {Piotr W. Nowak},
     title = {On coarse embeddability into $l\_p$-spaces and a conjecture of Dranishnikov},
     journal = {Fundamenta Mathematicae},
     volume = {189},
     year = {2006},
     pages = {111-116},
     zbl = {1097.46052},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm189-2-2}
}
Piotr W. Nowak. On coarse embeddability into $ℓ_p$-spaces and a conjecture of Dranishnikov. Fundamenta Mathematicae, Tome 189 (2006) pp. 111-116. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm189-2-2/