Let (α) denote the class of all cardinal sequences of length α associated with compact scattered spaces (or equivalently, superatomic Boolean algebras). Also put . We show that f ∈ (α) iff for some natural number n there are infinite cardinals and ordinals such that and where each . Under GCH we prove that if α < ω₂ then (i) ; (ii) if λ > cf(λ) = ω, ; (iii) if cf(λ) = ω₁, ; (iv) if cf(λ) > ω₁, . This yields a complete characterization of the classes (α) for all α < ω₂, under GCH.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm189-1-3, author = {Istv\'an Juh\'asz and Lajos Soukup and William Weiss}, title = {Cardinal sequences of length < o2 under GCH}, journal = {Fundamenta Mathematicae}, volume = {189}, year = {2006}, pages = {35-52}, zbl = {1097.54004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm189-1-3} }
István Juhász; Lajos Soukup; William Weiss. Cardinal sequences of length < ω₂ under GCH. Fundamenta Mathematicae, Tome 189 (2006) pp. 35-52. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm189-1-3/