Cardinal sequences of length < ω₂ under GCH
István Juhász ; Lajos Soukup ; William Weiss
Fundamenta Mathematicae, Tome 189 (2006), p. 35-52 / Harvested from The Polish Digital Mathematics Library

Let (α) denote the class of all cardinal sequences of length α associated with compact scattered spaces (or equivalently, superatomic Boolean algebras). Also put λ(α)=s(α):s(0)=λ=min[s(β):β<α]. We show that f ∈ (α) iff for some natural number n there are infinite cardinals λi>λ>...>λn-1 and ordinals α,...,αn-1 such that α=α++αn-1 and f=ff...fn-1 where each fiλi(αi). Under GCH we prove that if α < ω₂ then (i) ω(α)=sαω,ω:s(0)=ω; (ii) if λ > cf(λ) = ω, λ(α)=sαλ,λ:s(0)=λ,s-1λisω-closedinα; (iii) if cf(λ) = ω₁, λ(α)=sαλ,λ:s(0)=λ,s-1λisω-closedandsuccessor-closedinα; (iv) if cf(λ) > ω₁, λ(α)=αλ. This yields a complete characterization of the classes (α) for all α < ω₂, under GCH.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:282701
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm189-1-3,
     author = {Istv\'an Juh\'asz and Lajos Soukup and William Weiss},
     title = {Cardinal sequences of length < o2 under GCH},
     journal = {Fundamenta Mathematicae},
     volume = {189},
     year = {2006},
     pages = {35-52},
     zbl = {1097.54004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm189-1-3}
}
István Juhász; Lajos Soukup; William Weiss. Cardinal sequences of length < ω₂ under GCH. Fundamenta Mathematicae, Tome 189 (2006) pp. 35-52. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm189-1-3/