We analyse perturbative expansions of the invariants defined from unitary representations of the Quantum Lorentz Group in two different ways, namely using the Kontsevich Integral and weight systems, and the R-matrix in the Quantum Lorentz Group defined by Buffenoir and Roche. The two formulations are proved to be equivalent; and they both yield ℂ[[h]]h-valued knot invariants related with the Melvin-Morton expansion of the Coloured Jones Polynomial.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm188-0-4, author = {Jo\~ao Faria Martins}, title = {Knot theory with the Lorentz group}, journal = {Fundamenta Mathematicae}, volume = {185}, year = {2005}, pages = {59-93}, zbl = {1106.57010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm188-0-4} }
João Faria Martins. Knot theory with the Lorentz group. Fundamenta Mathematicae, Tome 185 (2005) pp. 59-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm188-0-4/