The present paper gives a quick survey of virtual and classical knot theory and presents a list of unsolved problems about virtual knots and links. These are all problems in low-dimensional topology with a special emphasis on virtual knots. In particular, we touch new approaches to knot invariants such as biquandles and Khovanov homology theory. Connections to other geometrical and combinatorial aspects are also discussed.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm188-0-13, author = {Roger Fenn and Louis H. Kauffman and Vassily O. Manturov}, title = {Virtual knot theory-unsolved problems}, journal = {Fundamenta Mathematicae}, volume = {185}, year = {2005}, pages = {293-323}, zbl = {1084.57005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm188-0-13} }
Roger Fenn; Louis H. Kauffman; Vassily O. Manturov. Virtual knot theory-unsolved problems. Fundamenta Mathematicae, Tome 185 (2005) pp. 293-323. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm188-0-13/