We define an unusual continuum M with the fixed-point property in the plane ℝ². There is a disk D in ℝ² such that M ∩ D is an arc and M ∪ D does not have the fixed-point property. This example answers a question of R. H. Bing. The continuum M is a countable union of arcs.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm186-3-3, author = {Charles L. Hagopian and Janusz R. Prajs}, title = {A fixed-point anomaly in the plane}, journal = {Fundamenta Mathematicae}, volume = {185}, year = {2005}, pages = {233-249}, zbl = {1101.54036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm186-3-3} }
Charles L. Hagopian; Janusz R. Prajs. A fixed-point anomaly in the plane. Fundamenta Mathematicae, Tome 185 (2005) pp. 233-249. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm186-3-3/