On ordinals accessible by infinitary languages
Saharon Shelah ; Pauli Väisänen ; Jouko Väänänen
Fundamenta Mathematicae, Tome 185 (2005), p. 193-214 / Harvested from The Polish Digital Mathematics Library

Let λ be an infinite cardinal number. The ordinal number δ(λ) is the least ordinal γ such that if ϕ is any sentence of Lλω, with a unary predicate D and a binary predicate ≺, and ϕ has a model ℳ with D, a well-ordering of type ≥ γ, then ϕ has a model ℳ ’ where D',' is non-well-ordered. One of the interesting properties of this number is that the Hanf number of Lλω is exactly δ(λ). It was proved in [BK71] that if ℵ₀ < λ < κareregularcardinalnumbers,thenthereisaforcingextension,preservingcofinalities,suchthatintheextension2λ = κandδ(λ)<λ.Weimprovethisresultbyprovingthefollowing:Suppose<λ<θκarecardinalnumberssuchthatλ<λ=λ; ∙ cf(θ) ≥ λ⁺ and μλ<θ whenever μ < θ; ∙ κλ=κ. Then there is a forcing extension preserving all cofinalities, adding no new sets of cardinality < λ, and such that in the extension 2λ=κ and δ(λ) = θ.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:282975
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm186-3-1,
     author = {Saharon Shelah and Pauli V\"ais\"anen and Jouko V\"a\"an\"anen},
     title = {On ordinals accessible by infinitary languages},
     journal = {Fundamenta Mathematicae},
     volume = {185},
     year = {2005},
     pages = {193-214},
     zbl = {1096.03041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm186-3-1}
}
Saharon Shelah; Pauli Väisänen; Jouko Väänänen. On ordinals accessible by infinitary languages. Fundamenta Mathematicae, Tome 185 (2005) pp. 193-214. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm186-3-1/