We prove the following theorem: Let G be a compact connected graph and let f: G → G be a piecewise linear surjection which satisfies the following condition: for each nondegenerate subcontinuum A of G, there is a positive integer n such that fⁿ(A) = G. Then, for each ε > 0, there is a map which is ε-close to f such that the inverse limit is hereditarily indecomposable.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm185-3-1, author = {K. Kawamura and H. M. Tuncali and E. D. Tymchatyn}, title = {Hereditarily indecomposable inverse limits of graphs}, journal = {Fundamenta Mathematicae}, volume = {185}, year = {2005}, pages = {195-210}, zbl = {1115.54013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm185-3-1} }
K. Kawamura; H. M. Tuncali; E. D. Tymchatyn. Hereditarily indecomposable inverse limits of graphs. Fundamenta Mathematicae, Tome 185 (2005) pp. 195-210. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm185-3-1/