Hereditarily indecomposable inverse limits of graphs
K. Kawamura ; H. M. Tuncali ; E. D. Tymchatyn
Fundamenta Mathematicae, Tome 185 (2005), p. 195-210 / Harvested from The Polish Digital Mathematics Library

We prove the following theorem: Let G be a compact connected graph and let f: G → G be a piecewise linear surjection which satisfies the following condition: for each nondegenerate subcontinuum A of G, there is a positive integer n such that fⁿ(A) = G. Then, for each ε > 0, there is a map fε:GG which is ε-close to f such that the inverse limit (G,fε) is hereditarily indecomposable.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:283292
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm185-3-1,
     author = {K. Kawamura and H. M. Tuncali and E. D. Tymchatyn},
     title = {Hereditarily indecomposable inverse limits of graphs},
     journal = {Fundamenta Mathematicae},
     volume = {185},
     year = {2005},
     pages = {195-210},
     zbl = {1115.54013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm185-3-1}
}
K. Kawamura; H. M. Tuncali; E. D. Tymchatyn. Hereditarily indecomposable inverse limits of graphs. Fundamenta Mathematicae, Tome 185 (2005) pp. 195-210. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm185-3-1/