We prove the following theorem: Let G be a compact connected graph and let f: G → G be a piecewise linear surjection which satisfies the following condition: for each nondegenerate subcontinuum A of G, there is a positive integer n such that fⁿ(A) = G. Then, for each ε > 0, there is a map which is ε-close to f such that the inverse limit is hereditarily indecomposable.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm185-3-1,
author = {K. Kawamura and H. M. Tuncali and E. D. Tymchatyn},
title = {Hereditarily indecomposable inverse limits of graphs},
journal = {Fundamenta Mathematicae},
volume = {185},
year = {2005},
pages = {195-210},
zbl = {1115.54013},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm185-3-1}
}
K. Kawamura; H. M. Tuncali; E. D. Tymchatyn. Hereditarily indecomposable inverse limits of graphs. Fundamenta Mathematicae, Tome 185 (2005) pp. 195-210. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm185-3-1/