Classification of homotopy classes of equivariant gradient maps
E. N. Dancer ; K. Gęba ; S. M. Rybicki
Fundamenta Mathematicae, Tome 185 (2005), p. 1-18 / Harvested from The Polish Digital Mathematics Library

Let V be an orthogonal representation of a compact Lie group G and let S(V),D(V) be the unit sphere and disc of V, respectively. If F: V → ℝ is a G-invariant C¹-map then the G-equivariant gradient C⁰-map ∇F: V → V is said to be admissible provided that (F)-1(0)S(V)=. We classify the homotopy classes of admissible G-equivariant gradient maps ∇F: (D(V),S(V)) → (V,V∖0).

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:283144
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm185-1-1,
     author = {E. N. Dancer and K. G\k eba and S. M. Rybicki},
     title = {Classification of homotopy classes of equivariant gradient maps},
     journal = {Fundamenta Mathematicae},
     volume = {185},
     year = {2005},
     pages = {1-18},
     zbl = {1086.47031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm185-1-1}
}
E. N. Dancer; K. Gęba; S. M. Rybicki. Classification of homotopy classes of equivariant gradient maps. Fundamenta Mathematicae, Tome 185 (2005) pp. 1-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm185-1-1/