Let V be an orthogonal representation of a compact Lie group G and let S(V),D(V) be the unit sphere and disc of V, respectively. If F: V → ℝ is a G-invariant C¹-map then the G-equivariant gradient C⁰-map ∇F: V → V is said to be admissible provided that . We classify the homotopy classes of admissible G-equivariant gradient maps ∇F: (D(V),S(V)) → (V,V∖0).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm185-1-1, author = {E. N. Dancer and K. G\k eba and S. M. Rybicki}, title = {Classification of homotopy classes of equivariant gradient maps}, journal = {Fundamenta Mathematicae}, volume = {185}, year = {2005}, pages = {1-18}, zbl = {1086.47031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm185-1-1} }
E. N. Dancer; K. Gęba; S. M. Rybicki. Classification of homotopy classes of equivariant gradient maps. Fundamenta Mathematicae, Tome 185 (2005) pp. 1-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm185-1-1/