Signature of rotors
Mieczysław K. Dąbkowski ; Makiko Ishiwata ; Józef H. Przytycki ; Akira Yasuhara
Fundamenta Mathematicae, Tome 184 (2004), p. 79-97 / Harvested from The Polish Digital Mathematics Library

Rotors were introduced as a generalization of mutation by Anstee, Przytycki and Rolfsen in 1987. In this paper we show that the Tristram-Levine signature is preserved by orientation-preserving rotations. Moreover, we show that any link invariant obtained from the characteristic polynomial of the Goeritz matrix, including the Murasugi-Trotter signature, is not changed by rotations. In 2001, P. Traczyk showed that the Conway polynomials of any pair of orientation-preserving rotants coincide. We show that there is a pair of orientation-reversing rotants with different Conway polynomials.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:282784
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-6,
     author = {Mieczys\l aw K. D\k abkowski and Makiko Ishiwata and J\'ozef H. Przytycki and Akira Yasuhara},
     title = {Signature of rotors},
     journal = {Fundamenta Mathematicae},
     volume = {184},
     year = {2004},
     pages = {79-97},
     zbl = {1079.57007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-6}
}
Mieczysław K. Dąbkowski; Makiko Ishiwata; Józef H. Przytycki; Akira Yasuhara. Signature of rotors. Fundamenta Mathematicae, Tome 184 (2004) pp. 79-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-6/