A homology theory is developed for set-theoretic Yang-Baxter equations, and knot invariants are constructed by generalized colorings by biquandles and Yang-Baxter cocycles.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-3,
author = {J. Scott Carter and Mohamed Elhamdadi and Masahico Saito},
title = {Homology theory for the set-theoretic Yang-Baxter equation and knot invariants from generalizations of quandles},
journal = {Fundamenta Mathematicae},
volume = {184},
year = {2004},
pages = {31-54},
zbl = {1067.57006},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-3}
}
J. Scott Carter; Mohamed Elhamdadi; Masahico Saito. Homology theory for the set-theoretic Yang-Baxter equation and knot invariants from generalizations of quandles. Fundamenta Mathematicae, Tome 184 (2004) pp. 31-54. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-3/