The equation [B,(A-1)(A,B)] = 0 and virtual knots and links
Stephen Budden ; Roger Fenn
Fundamenta Mathematicae, Tome 184 (2004), p. 19-29 / Harvested from The Polish Digital Mathematics Library

Let A, B be invertible, non-commuting elements of a ring R. Suppose that A-1 is also invertible and that the equation [B,(A-1)(A,B)] = 0 called the fundamental equation is satisfied. Then this defines a representation of the algebra ℱ = A, B | [B,(A-1)(A,B)] = 0. An invariant R-module can then be defined for any diagram of a (virtual) knot or link. This halves the number of previously known relations and allows us to give a complete solution in the case when R is the quaternions.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:283165
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-2,
     author = {Stephen Budden and Roger Fenn},
     title = {The equation [B,(A-1)(A,B)] = 0 and virtual knots and links},
     journal = {Fundamenta Mathematicae},
     volume = {184},
     year = {2004},
     pages = {19-29},
     zbl = {1070.57003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-2}
}
Stephen Budden; Roger Fenn. The equation [B,(A-1)(A,B)] = 0 and virtual knots and links. Fundamenta Mathematicae, Tome 184 (2004) pp. 19-29. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-2/