For smooth knottings of compact (not necessarily orientable) n-dimensional manifolds in (or ), we generalize the notion of knot moves to higher dimensions. This reproves and generalizes the Reidemeister moves of classical knot theory. We show that for any dimension there is a finite set of elementary isotopies, called moves, so that any isotopy is equivalent to a finite sequence of these moves.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-16, author = {Dennis Roseman}, title = {Elementary moves for higher dimensional knots}, journal = {Fundamenta Mathematicae}, volume = {184}, year = {2004}, pages = {291-310}, zbl = {1069.57014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-16} }
Dennis Roseman. Elementary moves for higher dimensional knots. Fundamenta Mathematicae, Tome 184 (2004) pp. 291-310. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-16/