Elementary moves for higher dimensional knots
Dennis Roseman
Fundamenta Mathematicae, Tome 184 (2004), p. 291-310 / Harvested from The Polish Digital Mathematics Library

For smooth knottings of compact (not necessarily orientable) n-dimensional manifolds in n+2 (or n+2), we generalize the notion of knot moves to higher dimensions. This reproves and generalizes the Reidemeister moves of classical knot theory. We show that for any dimension there is a finite set of elementary isotopies, called moves, so that any isotopy is equivalent to a finite sequence of these moves.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:283078
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-16,
     author = {Dennis Roseman},
     title = {Elementary moves for higher dimensional knots},
     journal = {Fundamenta Mathematicae},
     volume = {184},
     year = {2004},
     pages = {291-310},
     zbl = {1069.57014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-16}
}
Dennis Roseman. Elementary moves for higher dimensional knots. Fundamenta Mathematicae, Tome 184 (2004) pp. 291-310. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-16/