The virtual and universal braids
Valerij G. Bardakov
Fundamenta Mathematicae, Tome 184 (2004), p. 1-18 / Harvested from The Polish Digital Mathematics Library

We study the structure of the virtual braid group. It is shown that the virtual braid group is a semi-direct product of the virtual pure braid group and the symmetric group. Also, it is shown that the virtual pure braid group is a semi-direct product of free groups. From these results we obtain a normal form of words in the virtual braid group. We introduce the concept of a universal braid group. This group contains the classical braid group and has as quotients the singular braid group, virtual braid group, welded braid group, and classical braid group.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:283356
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-1,
     author = {Valerij G. Bardakov},
     title = {The virtual and universal braids},
     journal = {Fundamenta Mathematicae},
     volume = {184},
     year = {2004},
     pages = {1-18},
     zbl = {1078.20036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-1}
}
Valerij G. Bardakov. The virtual and universal braids. Fundamenta Mathematicae, Tome 184 (2004) pp. 1-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm184-0-1/